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Abstract 

 
Characteristics of nitrogen loading and aquifer susceptibility to contamination were 

evaluated to determine their influence on contamination of shallow ground water by 
nitrate.  A set of 13 explanatory variables was derived from these characteristics, and 
variables that have a significant influence were identified using logistic regression (LR).     
Multivariate LR models based on more than 900 sampled wells predicted the probability 
of exceeding 4 mg/L of nitrate in ground water.  The final LR model consists of the 
following variables: (1) nitrogen fertilizer loading (p-value = 0.012), (2) percent 
cropland-pasture (p < 0.001), (3) natural log of population density (p < 0.001), (4) 
percent well-drained soils (p = 0.002), (5) depth to the seasonally high water table (p = 
0.001), and (6) presence or absence of a fracture zone within an aquifer (p = 0.002).  
Variables 1-3 were compiled within circular, 500-m radius areas surrounding sampled 
wells, and variables 4-6 were compiled within larger areas representing targeted land use 
and aquifers of interest.  Fitting criteria indicate that the full logistic-regression model is 
highly significant (p < 0.001), compared with an intercept-only model that contains none 
of the explanatory variables.  A goodness-of-fit test indicates that the model fits the data 
very well, and observed and predicted probabilities of exceeding 4 mg/L nitrate in ground 
water are strongly correlated (r2 = 0.971).  Based on the multivariate LR model, 
vulnerability of ground water to contamination by nitrate depends not on any single 
factor but on the combined, simultaneous influence of factors representing nitrogen 
loading sources and aquifer susceptibility characteristics. 
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Introduction 
 
Ground water provides drinking water for more than one-half of the people in the 

United States, and accounted for 39 percent of water withdrawn to supply cities and 
towns and 96 percent of water withdrawn by private users in 1990 (Solley and others, 
1993).  This important national resource is vulnerable to contamination by chemicals, 
including nitrate, that can pass through soil to the water table.  Major sources of nitrate in 
watersheds of the U.S. include inorganic fertilizer, animal manure, and atmospheric 
deposition (Puckett, 1994).  Nitrate is soluble in water, can easily leach through soil, and 
can persist in shallow ground water for decades. 

Elevated concentrations of nitrate in drinking water are a cause for concern.  
Ingestion of nitrate by infants can cause low oxygen levels in the blood, a potentially fatal 
condition (Spalding and Exner, 1993).  Other adverse health effects potentially related to 
ingestion of nitrate in drinking water include spontaneous abortions and non-Hodgkin's 
lymphoma.  Nitrate concentrations of 19-29 milligrams per liter (mg/L) in rural, domestic 
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wells in Indiana might have caused eight spontaneous abortions among four women 
during 1991-1994 (Centers for Disease Control and Prevention, 1996).  Nitrate 
concentrations of 4 mg/L or more in water from community wells in Nebraska have been 
associated with increased risk of non-Hodgkin's lymphoma (Ward and others, 1996).  
The U.S. Environmental Protection Agency (USEPA) has established a maximum 
contaminant level (MCL) of 10 mg/L nitrate as nitrogen (N) (U.S. Environmental 
Protection Agency, 1995).  Shallow ground water unaffected by human activities 
commonly contains less than 2 mg/L of nitrate (Mueller and Helsel, 1996). 

Determining where ground water is at risk of nitrate contamination can alert 
managers of the need to protect water supplies.  Approaches to assessing aquifer 
vulnerability to contamination include overlay and index methods, process-based 
simulation models, and statistical methods.  Advantages of statistical methods are that 
they are inherently flexible, can readily accommodate differences in spatial scale, and can 
effectively describe uncertainty (National Research Council, 1993). 

Factors that influence contaminant behavior vary widely at large spatial scales, 
which complicates efforts to model aquifer vulnerability.  Additionally, “water quality is 
a multivariate concept” (Riley and others, 1990) that cannot be summarized by any single 
constituent or factor.  Multiple factors influence nitrate behavior in ground water at 
international, regional, and local scales.  Nitrogen dose, crop type, soil texture, and 
ground-water level were empirically related to nitrate leaching from topsoil and ground-
water nitrate concentration in Europe for the purpose of constructing vulnerability maps 
(Meinardi and others, 1995).  D’Agostino and others (1998) observed that nitrate 
concentration in ground water beneath the Lucca Plain, Italy, varied substantially 
depending on local agricultural practices, proximity to the Serchio River, and the 
presence of a confining layer.  At the local scale, overwinter cover cropping and delayed 
plowing generally decreased nitrate leaching from a calcareous loam soil in Eastern 
England (Davies and others, 1996). 

In previous research in the United States (Nolan and Stoner, 2000), relations between 
ground-water nitrate concentration and potential explanatory variables were analyzed in 
simple univariate fashion, resulting in considerable unexplained variation in nitrate 
concentration.  For example, a plot of median nitrate concentration in shallow ground 
water versus median N load from fertilizer, manure, and atmospheric sources showed 
generally increasing nitrate response to N loading but exhibited considerable scatter.  The 
variation in nitrate response was attributed in part to areas with well-drained soils or 
fractured bedrock, which can readily convey even small amounts of applied N to the 
water table, and to areas with poorly drained soils that impede nitrate movement to 
ground water even when N load is high.  Thus, including a variable such as soil-drainage 
characteristic in the analysis would explain additional variation. 

Multivariate statistical methods can improve on univariate analysis by 
simultaneously considering the influence of N loading, soil-drainage characteristic, 
presence/absence of fractured rocks, and other variables on nitrate concentration in 
ground water.  In this paper, logistic regression (LR), a multivariate statistical method, 
was used to interpret ground-water nitrate data collected as part of the U.S. Geological 
Survey’s National Water-Quality Assessment (NAWQA) Program during 1992-1995.  
Logistic-regression models containing one (univariate) or more (multivariate) 
explanatory variables were used to predict the likelihood of exceeding 4 mg/L nitrate in 
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ground waters of the United States.  The objective of this research was to apply 
multivariate LR to the NAWQA data set to identify variables that in combination 
significantly influence nitrate concentration in shallow, recently recharged ground water. 

 
Background 

 
Logistic regression has been used extensively in epidemiological studies and is 

becoming more commonplace in the environmental sciences.  Logistic regression differs 
from classical, linear regression in that the modeled response is the probability of being 
in a category, rather than the observed quantity of a response variable (Helsel and Hirsch, 
1992).  The main assumption of LR is that the natural logarithm of the odds ratio 
(probability of being in a response category) is linearly related to the explanatory 
variables (Afifi and Clark, 1984).  Regression coefficients are estimated using the method 
of maximum likelihood. 

Because a threshold value is specified to define the response categories, LR is well-
suited to analysis of non-detects.  Nearly 20 percent of shallow ground-water samples 
collected by NAWQA have nitrate concentration below the detection limit of 0.05 mg/L.  
Additionally, Tesoriero and others (1998) found that LR yielded significant relations (p ≤ 
0.05) between explanatory variables and nitrate concentration in ground waters of the 
Puget Sound Basin, northwestern Washington, whereas linear regression did not.  
Variation in nitrate concentration was such that predicting the probability of elevated 
nitrate concentration was more feasible than predicting a specific concentration. 

The odds ratio is based on the probability of exceeding a given threshold value: 
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The log of the odds ratio, or logit, transforms a variable constrained between 0 and 1 
into a continuous, unbounded variable that is a linear function of the explanatory 
variables.  The resulting LR equation is (Helsel and Hirsch, 1992) 
 

    bx+=







− ob

p
p

1
log     (2) 

 
where 

bo = constant 
bx = vector of slope coefficients and explanatory variables 
 

The logistic transformation converts the predicted values of the response variable back 
into probability units (Helsel and Hirsch, 1992): 
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The likelihood ratio test statistic (G) tests the statistical significance of coefficients in 

the LR model (Hosmer and Lemeshow, 1989; Tesoriero and Voss, 1997): 
 

    )(2 modelint LLG −−=     (4) 
 
where 

Lint = log-likelihood of intercept-only model 
Lmodel = log-likelihood of model with one or more explanatory variables 

 
The G statistic is chi-square distributed under the null hypothesis that slope coefficients 
for the explanatory variables in the model equal zero.  For nested models, G is used to 
determine the significance of adding one or more new explanatory variables to a model.  
A nested model contains all of the explanatory variables in the simpler model, plus one or 
more additional variables.  The degrees of freedom equals the number of additional 
variables in the more complex model (Helsel and Hirsch, 1992). 

The Wald statistic is the ratio of the maximum likelihood estimate of the slope 
coefficient to its standard error (Hosmer and Lemeshow, 1989).  It is normally distributed 
and its p-value indicates whether the slope coefficient is significantly different from zero.  
When one additional variable is introduced into an LR model, the square of the Wald 
statistic is approximately chi-square distributed with one degree of freedom (Kleinbaum, 
1994).  The G statistic and the corresponding squared Wald statistic yield approximately 
the same value in very large samples. 

Wald and G statistics were used in this study to build an optimal model, and the 
Hosmer-Lemeshow (HL) goodness-of-fit statistic was then used to see how well the 
model fit the data.  The G statistic is emphasized in model building because it compares 
“the observed values of the response variable to predicted values obtained from models 
with and without the variable in question” (Hosmer and Lemeshow, 1989).  In contrast, 
the HL statistic compares observed values to those fitted under one model. 

The HL statistic compares observed and predicted probabilities for data grouped 
from low to high by values of the predicted probabilities.  Ten groups (deciles) 
commonly are used, with the first group comprising the n/10 observations with the 
smallest predicted probabilities, and the last group containing the n/10 observations with 
the largest predicted probabilities (Hosmer and Lemeshow, 1989).  Each group yields an 
average predicted probability and an observed probability based on the number of 
observed values in the group that are greater than the threshold value.  The HL statistic is 
chi-squared distributed and, because the null hypothesis is that the model fits the data, 
higher p-values indicate better fit. 

Prior studies show that LR can successfully identify variables that significantly affect 
ground-water quality.  Eckhardt and Stackelberg (1995) used logistic regression to 
predict the probability of exceeding 3 mg/L of nitrate in ground water beneath 
agricultural, suburban, and undeveloped areas of Long Island, New York.  Explanatory 
variables consisted of population density, percent medium-density residential land use, 
percent agricultural land use, and depth to the water table.  Population and land-use data 
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were compiled within 0.80-kilometer (km) radius circular areas surrounding each well to 
reflect the influence of recent (within six years) land use on ground-water quality.  Rank 
correlations between predicted probabilities and observed responses were used to 
evaluate model performance.  Rank correlations range from zero (no fit) to one (perfect 
fit).  The LR models developed for nitrate had rank correlation coefficients of 0.87–0.88 
and indicated that nitrate concentration generally increased as population density and 
percent residential and agricultural land use increased, and as the depth to the water table 
decreased. 

Tesoriero and Voss (1997) used LR to predict the likelihood that nitrate is present in 
concentrations of 3 mg/L or more in ground waters of the Puget Sound Basin in 
northwestern Washington.  Variables evaluated included well depth, ground-water 
recharge, soil hydrologic group, surficial geology type, land-use type, and population 
density.  Well depth, surficial geology, and percentages of agricultural and urban lands 
within 3.2 km of sampled wells best explained elevated nitrate concentration in ground 
water.  Nitrate data from more than 3,000 wells were used to develop and validate the LR 
model. 

Rupert (1998) used separate LR models to predict the probability of detecting 
atrazine/desethyl-atrazine and the likelihood of nitrate concentration exceeding 2 mg/L in 
ground waters of the Upper Snake River Basin in southeastern Idaho.  The first model 
indicated that land use, precipitation, soil hydrologic group, and well depth were 
significantly related to atrazine/desethyl-atrazine detections.  The second model indicated 
that depth to water, land use, and soil drainage were significantly related to elevated 
nitrate concentration.  The best fitting pesticide model resulted in strong correlation 
(linear correlation coefficient = 0.960) between observed rates of atrazine/desethyl-
atrazine detection and probabilities of detection predicted by the model. 

Teso and others (1996) used LR to predict the probability of occurrence of DBCP (a 
nematicide) in ground water beneath land sections of eastern Fresno County, California.  
Soil particle-size classes (e.g., sandy, loamy) were used as independent variables in the  
model-building process.  The resulting model was statistically significant (p = 0.017) and 
included sandy and fine particle-size classes.  The model correctly predicted the 
contamination status of contaminated sections 89.7 % of the time, but the overall success 
rate (considering both contaminated and uncontaminated sections) was only 53.2 %.  The 
overall success rate might have been affected by the small number of samples associated 
with the uncontaminated sections. 
 

Methods 
 

The data set used for this paper comprises 1,230 wells sampled during selected land-
use studies conducted in the first 20 NAWQA study areas (called “study units”) (Figure 
1), which started in 1991 and sampled ground water during 1992-1995.  “Land-use 
studies” evaluate the quality of recently recharged ground water (generally less than 10-
years old) in regions that represent the intersection of a targeted land use and an aquifer 
of interest.  Each study unit typically contains one or more land-use studies.  The 54 
shallow land-use studies used in this research typically comprise 20–30 wells each and 
range in size from 146 to 62,900 km2 (median area is 4,370 km2).  Wells sampled in land-
use studies usually are installed by NAWQA, and public-supply wells are avoided 
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because of uncertainties in the location of the recharge area.  Springs and agricultural 
drains were excluded from the analysis because of uncertainties in the source of water 
and/or contributing land-use area.  To preclude undue influence on results by wells that 
were sampled several times, only one sample per well was used in statistical analyses.  
The sample selected for analysis represents the date that the land-use study network was 
sampled by NAWQA for a large suite of water-quality parameters, which occurs once per 
high-intensity phase of study.  Isolated follow-up samples (e.g., for a limited number of 
parameters to assess seasonal trends) were not considered because these dates vary 
widely and do not reflect the network sampling date. 

All wells were sampled according to procedures described by Koterba and others 
(1995).  Nitrite-plus-nitrate was analyzed by the USGS National Water Quality 
Laboratory using procedures described in Fishman (1993), and reported concentrations 
are based on elemental N (e.g., NO2

- plus NO3
- as N).  Nitrite-plus-nitrate concentration 

is referred to in this paper as “nitrate” because nitrite contribution to nitrite-plus-nitrate in 
ground water generally is negligible (Nolan and Stoner, 2000). 

Characteristics of N loading and aquifer susceptibility to contamination and their 
influence on nitrate concentration in shallow ground water were evaluated by developing 
a set of explanatory variables (Table 1) for use in LR.  To develop the N-loading 
variables, 1991-1993 data representing atmospheric deposition, animal manure (1992 
only), and commercial fertilizer sources were compiled by land use within circular, 500- 
meter (m) radius areas surrounding sampled wells.  Fertilizer N was apportioned equally 
to agricultural and urban land within 500 m of sampled wells to account for residential 
fertilizer use.  Use of residential fertilizer is intensive in heavily populated areas such as 
Long Island, New York, where estimated annual application rates are as high as 180 
kg/hectare (ha) (Porter, 1980).  Manure N was apportioned to agricultural land only, and 
atmospheric N was assumed independent of land use within 500 m of sampled wells.  See 
Nolan and Stoner (2000) for detailed discussion on compilation of N loading variables 
and other ancillary data.  Fertilizer N was considered separately and in combination with 
manure N and atmospheric N to assess “total N” contribution.  In addition to N-loading 
data, the percent of Anderson Level II cropland-pasture (Anderson and others, 1976) and 
1990 population density (U.S. Bureau of the Census, 1991) within 500 m of sampled 
wells were used as measures of agricultural and urban intensity, respectively.  The 
Anderson land-use data were updated with 1990 Census population data to indicate 
recent conversion of agricultural land to new residential land (Hitt, 1994).  Population 
density was used as a surrogate for nonagricultural sources of N in urban areas. 

Aquifer susceptibility variables such as soil hydrologic group (HYDGRP), depth to 
the seasonally high water table, and percent organic matter were compiled from State Soil 
Geographic (STATSGO) data (Soil Conservation Service, 1994) as weighted averages 
within areas representing NAWQA land-use studies (Table 1), using methods described 
in Nolan and Stoner (2000).  These variables were compiled within land-use study areas 
because the STATSGO mapping units typically are much larger than the 500-m radius 
circular areas used to compile land-use attributes.  STATSGO attributes do not vary 
appreciably within the small circular areas and the resulting estimate would have 
resembled a point estimate rather than a weighted average. 

Percentages of soil HYDGRPs A and B in land-use study areas were summed to 
represent “well-drained” soils (Table 1).  Soils in HYDGRP A are defined as “deep, well 
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drained to excessively drained sands or gravels,” and HYDGRP B soils are defined as 
“moderately deep to deep, moderately well drained to well drained soils that have 
moderately fine to moderately coarse textures” (Soil Conservation Service, 1993).  Depth 
to the seasonally high water table represents the average, minimum unsaturated zone 
thickness in a land-use study area. 

Percent organic matter was used to represent denitrification potential in aquifers 
(Table 1).  It was hoped that percent organic matter in combination with depth to the 
seasonally high water table in a multivariate model would indicate conditions conducive 
to denitrification.  Denitrification is a microbially assisted process that transforms nitrate 
to N2 gas under reducing conditions when organic matter and/or selected reduced 
minerals are present (Korom, 1992).   

A binary variable indicating presence or absence of fractured rock in a land-use 
study area was coded “1” if the aquifer associated with a given land-use study consists of 
fractured rocks and “0” if it does not (Table 1).  Data indicating the presence or absence 
of rock fractures were compiled from lithologic descriptions of each land-use study area 
after consulting with local NAWQA personnel (Dana W. Kolpin, USGS, unpublished 
data, 2000). 

The percent artificially drained soils in land-use study areas (Table 1) was 
determined by compiling 1992 National Resources Inventory data (Soil Conservation 
Service, 1994) in a geographic information system (GIS) (Kerie J. Hitt, USGS, 
unpublished data, 1998).  Woodland-to-cropland ratio was calculated by dividing 
combined percentages of Anderson Level II deciduous forest, evergreen forest, and 
mixed forest lands within 500 m of sampled wells by combined percentages of cropland-
pasture, orchards, groves, vineyards, nurseries, ornamental horticultural areas, and 
confined feeding operations. 

The depth to the top of the open interval (well screen or open borehole) below water 
level (“sampling depth” in Table 1) was calculated by subtracting depth to ground water 
from open interval depth, for wells in which open interval depth is greater than depth to 
water.  If open interval depth is less than or equal to depth to ground water, then sampling 
depth was set to zero.  In unconfined aquifers typical of land-use studies, sampling depth 
represents the distance from the water-table surface to the top of the open interval.  
Deeper sampling depths generally correspond to older ground water, which is less likely 
to show effects from recent land use. 

Mean annual precipitation within land-use study areas was compiled in a GIS by 
David M. Wolock (USGS, unpublished data, 1998) for the period 1961-1990 (National 
Climatic Data Center, 1994) (Table 1).  The precipitation data were used to represent the 
potential for ground-water recharge, which influences nitrate transport through the 
unsaturated zone. 

Descriptive statistics in Table 1 include the median and interquartile range.  Medians 
were used as a measure of central tendency because they are resistant to the effects of 
outliers typical of skewed data sets.  Similarly, the interquartile range (75th percentile 
minus the 25th percentile) is a resistant measure of spread.  It consists of the middle 50 
percent of the data; thus it is not influenced by the 25 percent at either end (Helsel and 
Hirsch, 1992). 

Logistic regression was used to predict the likelihood that nitrate concentration in 
shallow ground water exceeds 4 mg/L.  This value indicates effects of human activities 
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on ground-water quality and also has health significancethe 4 mg/L level has been 
associated with increased risk of non-Hodgkin's lymphoma in Nebraska (Ward and 
others, 1996).  Model-fitting criteria evaluated in this study consist of the likelihood ratio 
test statistic (G), the Wald statistic, and the Hosmer-Lemeshow goodness-of-fit test 
statistic.  Explanatory variables in the final model are considered to most influence nitrate 
concentration in shallow ground water, based on this data set. 

Linear regression was used as an additional indicator of goodness-of-fit to compare 
observed and average predicted probabilities associated with the deciles used to calculate 
the HL statistic.  The coefficient of determination (r2) was computed for the observed and 
predicted probabilities, with higher r2 values indicating better fit.  In a related qualitative 
check, predicted and observed probabilities were plotted and visually compared with a 
1:1 line having an intercept of zero.  If all of the points fell on the 1:1 line, then the 
predicted and observed probabilities would agree perfectly. 

 
Results and Discussion 

 
Univariate Logistic-Regression Models 

Univariate LR models were developed for the explanatory variables in Table 1 to 
screen variables for inclusion in subsequent multivariate models.  Some of the univariate 
models are designed to test multiple influences on nitrate contamination of ground water 
to help identify combinations of variables for use in subsequent multivariate models.  For 
example, models consisting of fertilizer loading in HYDGRP B soils (UV2) and in 
HYDGRP A and B soils (UV3) investigate the influence of N loading in moderately 
well-drained to well-drained soils (Table 2). 

All of the univariate models except UV6, consisting of population density (G statistic 
p-value = 0.075), are statistically significant at the 0.05 level (Table 2).  All of the 
univariate models, however, have very low HL p-values, indicating that none fit the data 
well.  The highest HL p-value, only 0.005, is for model UV5 (percent cropland-pasture).  
(Higher HL p-values indicate better fit because the null hypothesis is that the model fits 
the data.) 

The strength of correlation between observed and predicted probabilities 
corresponding to deciles of risk was used as an additional indicator of goodness-of-fit to 
help select variables for inclusion in an initial multivariate LR model.  The r2 values 
range from 0.086 for model UV15 (precipitation) to 0.760 for model UV8 (percent well-
drained soils) (Table 2).  Figure 2 shows how linear-regression r2 indicates degree of 
logistic-regression model fit.  Observed and predicted probabilities associated with model 
UV8 (r2 = 0.760) generally follow the exact-fit 1:1 line, indicating reasonable agreement 
between observed and predicted probabilities (Figure 2a).  In contrast, observed and 
predicted probabilities for model UV9 (r2 = 0.119) deviate sharply from the 1:1 line 
(Figure 2b), indicating poor fit. 

 
Multivariate Logistic-Regression Models 

Explanatory variables from the best-fitting univariate models were combined into an 
initial multivariate LR model (MV1) to evaluate the simultaneous influence of variables 
that significantly affect nitrate contamination of shallow ground water.  The G statistic 
and strength of correlation between observed and predicted probabilities were used to 
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select variables for inclusion in the multivariate model.  Univariate models consisting of 
the following variables had statistically significant G statistics (p-value <0.05) and/or r2 

values of about 0.6 or greater, indicating reasonable correlation between observed and 
predicted probabilities: (1) fertilizer N in HYDGRP B soils, (2) percent cropland-pasture, 
(3) percent well-drained soils, (4) depth to seasonally high water table, (5) sampling 
depth, and (6) presence/absence of a rock fracture (Table 2).  The r2 value for sampling 
depth is only 0.298, but a plot of observed and predicted probabilities appears reasonable 
except for three points that are somewhat removed from the superimposed 1:1 line 
indicating exact fit.  This variable also was retained to explore a potential interaction with 
N fertilizer loading.  Woodland-to-cropland ratio has a high r2 value (0.741), but was not 
retained because it was calculated using percent cropland-pasture, which is already in the 
model, and because visual inspection of the plot of observed and predicted probabilities 
revealed a poor fit.  Half the points are well removed from the superimposed 1:1 line. 

Multivariate model MV1, consisting of fertilizer N and variables 2-6 above (Table 
3), yielded an HL p-value of 0.067 and thus fits the data somewhat better than the 
univariate models; but the fit could be much improved.  Model MV1 has a highly 
significant G statistic p-value (p < 0.001), compared with the intercept only model that 
contains none of the explanatory variables. 

The presence of both fertilizer N and percent cropland-pasture in model MV1 raises 
potential multicollinearity concerns.  Multicollinearity arises when two or more 
explanatory variables are closely related, and can result in unrealistic model coefficient 
sign, unstable slope coefficients, and other problems (Helsel and Hirsch, 1992).  If 
multicollinearity were present, however, the standard error of both fertilizer N and 
percent cropland-pasture (indicated by the Wald p-values) would be very large because 
the LR model would not be able to select from among the two variables (Gregory E. 
Schwarz, USGS, unpublished data, 2000).  Wald p-values for model MV1 are highly 
significant for both fertilizer N (0.041) and percent cropland-pasture (0.001), dispelling 
multicollinearity concerns.  Percent cropland-pasture apparently contains information not 
embodied in fertilizer N, such as N loading from manure, atmospheric deposition, septic 
systems, or other sources.  Additionally, percent cropland-pasture incorporates 
information on crop type and tillage practice, which affect N transformations in soil and 
the efficiency of N uptake by crops. 

Exclusion of “total” N (comprising fertilizer, manure, and atmospheric deposition 
sources) from model MV1 does not mean that manure and atmospheric deposition are 
insignificant as N sources.  Compared with inorganic fertilizer, manure and atmospheric 
deposition contribute lesser amounts of N annually in the United States (Puckett, 1995) 
but are important regional sources.  Additionally, these variables likely are reflected in 
the percent cropland-pasture variable.  The fertilizer N variable was selected based on 
statistical performance with the NAWQA national data set. 

 
Nested Multivariate Logistic-Regression Models 

Nested LR models were tested to see if addition or removal of a single variable 
would significantly affect model performance.  Models in Table 3 are shown in order of 
nestingeach successive model within a category (e.g., “initial nested comparison”) 
includes one additional variable.  All models shown in Table 3 consist of 987 
observations to facilitate unbiased comparisons of model-fitting criteria. 



Bernard T. Nolan 10

The difference between models MV1 and MV3 is that MV1 contains the percent 
cropland-pasture variable and MV3 does not, providing an additional check on potential 
multicollinearity between fertilizer N and percent cropland-pasture.  The G statistic for 
MV1 (p-value = 0.001) indicates that the nested model containing percent cropland-
pasture is significantly improved over MV3 at the 0.05 level (Table 3). 

An interaction term was tested with model MV1 to see if model performance could 
be improved.  An interaction is present when a covariate (e.g., age) modifies the effect of 
a risk factor (e.g., gender) on outcome (Hosmer and Lemeshow, 1989).  For example, the 
effect of gender on outcome depends on the age at which the gender comparison is being 
made.  Model MV2 contains the interaction term fertilizer N*sampling depth to test 
whether the effect of fertilizer loading on nitrate contamination of ground water depends 
on sampling depth within the aquifer (Table 3).  Deeper sampling depths represent older 
ground water, which is less likely to show effects from recent fertilizer application 
(Nolan and Stoner, 2000).  The G statistic p-value for model MV2, however, is 0.141, 
indicating that the model is not significantly improved over MV1 at the 0.05 level.  
Because NAWQA land-use studies are designed to sample shallow, recently recharged 
ground-water, sampling depth might not vary sufficiently to influence nitrate 
concentration.  The interquartile range of sampling depth (5.3 m) is comparatively low.   
Additionally, the sign of the sampling depth coefficient used to calculate the interaction 
term is positive (0.001) in model MV1 and negative (-0.005) in MV2, and the Wald p-
values for sampling depth are high for both models (0.660 and 0.417).  For these reasons, 
the interaction term was excluded from subsequent multivariate models. 

Reverse selection was attempted to see if removing sampling depth (Wald p-value = 
0.660) from model MV1 would improve performance.  Reverse-selection results in Table 
3 are shown in forward order to allow comparison of G statistics associated with nested 
models MV4 and MV1.  The G statistic p-value for model MV1 is 0.661, indicating that 
sampling depth is statistically insignificant at the 0.05 level.  Wald p-values in the 
resulting model (MV4) are less than 0.05 for all explanatory variables.  Model MV4 is 
considered better than MV1 based on the highly significant Wald p-values associated 
with the explanatory variables. 

As a final check, the remaining explanatory variables rejected as part of univariate 
model screening each were introduced into model MV4 to see if they could improve 
model performance and, in the case of population density, attain statistical significance.   
With the exception of population density, the remaining variables yielded insignificant 
Wald p-values ranging from 0.19 (mean annual precipitation) to 0.91 (percent organic 
matter in soils).  Inclusion of population density (model MV5), however, yielded a G 
statistic p-value of <0.001, indicating that MV5 is significantly improved over model 
MV4 (Table 3).  Additionally, the HL p-value of 0.377 is much improved over that of 
initial multivariate model MV1 (p = 0.067). 

It is important to check the assumption of linearity in the logit after selecting 
variables for inclusion in a logistic-regression model (Hosmer and Lemeshow, 1989).  
Natural log (ln) transformation of population density (model MV6 in Table 4) resulted in 
a more linear response of the logit function and yielded an HL p-value of 0.641, 
considerably improved over that of model MV5 (p = 0.377). 

Evaluating HL p-values is somewhat subjective because little information exists on 
what range of values constitute acceptable fit.  In a study of risk factors associated with 
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low birth-weight infants, an HL p-value of 0.73 indicated that an LR model fit the data 
“quite well” (Hosmer and Lemeshow, 1989).  In the current paper, the HL p-value of 
0.641 is considered evidence of good fit based on visual comparison of plotted observed 
and predicted probabilities for deciles of risk, and the associated linear-regression r2 
value.  The observed and predicted probabilities follow close to the 1:1 exact-fit line 
(Figure 3), and the r2 value of 0.971 indicates strong correlation.  Model MV6 (Table 4) 
is considered “best” according to study objectives and fitting criteria emphasized in this 
study. 

 
Final Multivariate Logistic-Regression Model and Related Explanatory Variables 

Of the explanatory variables initially considered, those in MV6 are considered to 
most significantly influence nitrate contamination of shallow ground water, based on the 
data set used in this study.  Model MV6 consists of variables representing (1) fertilizer N 
loading (p-value = 0.012), (2) percent cropland-pasture (p < 0.001), (3) ln(population 
density) (p < 0.001), (4) percent well-drained soils (p = 0.002), (5) depth to the seasonally 
high water table (p = 0.001), and (6) presence or absence of a fracture zone within an 
aquifer (p = 0.002) (Table 4).  The Wald p-values associated with these variables are 
highly significant at the 0.05 level. 

The first three variables represent N source terms and the last three variables 
represent aquifer susceptibility to contamination.  Together, they form a conceptual 
model of aquifer vulnerability consisting of N loading to the land surface followed by 
transfer of nitrate to ground water through the unsaturated zone.  In this model, the 
degree to which nitrate from aboveground  N sources leaches to ground water is 
influenced by soil type, water-table position, and the presence or absence of fractured 
rocks. 

Slope coefficients for fertilizer N (0.005), percent cropland-pasture (0.015), and 
ln(population density) (0.194) are positive (Table 4), indicating that the likelihood of 
nitrate contamination of ground water increases with increasing levels of N sources.  This 
agrees with prior logistic-regression studies in which the probability of nitrate 
contamination of ground water increased with increasing percentages of agricultural land 
near sampled wells (Eckhardt and Stackelberg, 1995; Tesoriero and Voss, 1997). 
Relations between fertilizer N, extent of agricultural land, and nitrate concentration in 
ground water are well documented.  Hall (1992) analyzed N applications and nitrate 
concentrations for five wells on a farm in the Conestoga Valley of southeastern 
Pennsylvania.  He observed cause-and-effect relations between changes in rates of 
applied N in manure and fertilizers and changes in ground-water nitrate concentration, 
indicating that a significant amount of the applied N is transported with recharge to 
ground water within four to 19 months after application.  Ground-water nitrate 
concentration generally decreased after implementation of nutrient management plans 
that saw reductions of N application rates.  Time-series data indicated a close relation 
between applied N and nitrate in ground water, and correlations between applied N and 
ground-water nitrate were statistically significant at the 90-percent confidence level for 
all five wells. 

Hallberg and Keeney (1993) cited studies that found a direct relation between 
agricultural land use and nitrate in ground water.  As evidence they cite 3- to 60-fold 
increases of nitrate observed in ground water in agricultural areas, whereas ground water 



Bernard T. Nolan 12

beneath forestland, grassland, and even pastured areas generally contained less than 2 
mg/L nitrate.  They describe significant positive correlations between nitrate 
concentrations in ground water and the percentage area of fertilized crops and with N 
fertilizer application rates in the vicinity of sampling sites.  Additionally, a basin-scale 
study showed ground-water nitrate increasing in direct proportion to increasing fertilizer 
use.  Nitrogen amounts contributed by rainfall, crop rotation, and soil mineralization were 
considered in the N budget for the basin. 

Nolan and Stoner (2000) showed that nitrate concentration in shallow ground water 
beneath urban lands generally increased with increasing population density.  Median 
nitrate concentration was as high as 5.4 mg/L in areas of the Willamette Basin near 
Portland, Oregon.  The population of Portland, the state’s largest metropolitan area, was 
about 1.2 million people in 1990, and median population density within 500 m of 
sampled wells in the area was 2,300 people/km2.  Areas with more than 386 people/km2 
are considered “urban,” based on GIS analysis of 1990 Census data and Anderson land-
use data (Hitt, 1994). 

Domestic sewage and residential fertilizer are major sources of N in some heavily 
populated areas.  Septic systems and cesspools have long been sources of nitrate in 
ground waters of Long Island, New York, and turf grass is the major crop in Nassau 
County (Porter, 1980).  Annual application rates of N fertilizer to residential lawns in the 
area ranged from an estimated 80 to 180 kg/ha in the mid 1970s. 

Aquifer susceptibility terms in model MV6 comprise percent well-drained soils, 
depth to the seasonally high water table, and the presence or absence of a rock fracture.  
The slope coefficient for percent well-drained soils is positive (0.017), indicating that the 
likelihood of nitrate contamination of ground water increases with better drainage (Table 
4).  This result agrees with prior research.  Tesoriero and Voss (1997) showed that the 
predicted probability of nitrate contamination of ground water in the Puget Sound Basin 
is greater for shallow wells in coarse-grained glacial deposits than for shallow wells in 
fine-grained glacial deposits and in alluvium.  Rupert (1998) found that STATSGO soil 
hydrologic group significantly improved multivariate LR models used to predict 
contamination of ground water by atrazine/desethyl-atrazine, and that STATSGO soil 
drainage characteristic significantly improved models for predicting nitrate contamination 
of ground water.  Soil drainage data from STATSGO denote the frequency and duration 
of periods when soil is free from saturation (Soil Conservation Service, 1994).  Poorly 
drained soils commonly are saturated and can have reducing conditions conducive to 
denitrification, which lessens the likelihood of nitrate contamination of ground water.  
Similarly, Burkart and others (1999) observed that nitrate concentration in shallow, 
unconfined aquifers was negatively correlated with STATSGO HYDGRP C soils, which 
have moderately fine to fine soil texture and contain a layer that restricts downward 
movement of water (Soil Conservation Service, 1993).  In addition to promoting 
conditions conducive to denitrification, HYDGRP C soils more likely are artificially 
drained for improved crop production, which diverts nitrate in infiltrating ground water to 
nearby streams (Burkart and others, 1999). 

The slope coefficient for depth to the seasonally high water table in model MV6 is 
positive (0.850) (Table 4), indicating that as depth increases, the likelihood of nitrate 
contamination increases.  This result agrees with findings by Burkart and others (1999), 
who observed a positive correlation between STATSGO seasonally high water table and 
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nitrate concentration in shallow, unconfined aquifers.  These results at first seem 
counterintuitive because increasing depth to water generally involves greater travel 
distance and potential to encounter intervening, less permeable layers that inhibit 
leaching.  The NAWQA land-use studies, however, are designed to consistently sample 
shallow, recently recharged ground water (median depth to water = 4.4 m for this data 
set).  Because depth to ground water is uniformly shallow, travel distance is minimal and 
the potential for intervening layers is low.  Very shallow depth to ground water creates 
anoxic conditions, which promote denitrification (Böhlke and Denver, 1995; Nolan, 
1999; Spruill and others, 1998).  Denitrification is fueled by organic matter and selected 
reduced minerals under anoxic conditions.  Increasing depth to the water table reduces 
the likelihood that soils are saturated, lessening denitrification potential and increasing 
the likelihood of nitrate contamination of ground water.  Korom (1992) provides detailed 
discussion of denitrification in the saturated zone of aquifers. 

An additional explanation for the positive sign of the slope coefficient for depth to 
the seasonally high water table is that agricultural land is more likely found on well-
drained soils than on poorly drained soils.  The Spearman correlation between percent 
cropland-pasture and depth to the seasonally high water table is 0.19, for the data set used 
in this study.  The positive correlation suggests that use of agricultural chemicals is 
greater in areas with more well-drained soils (i.e., with greater depth to ground water), 
increasing the likelihood of nitrate contamination of ground water in these areas. 

The slope coefficient in model MV6 for presence or absence of a fracture zone is 
positive (1.033) (Table 4), indicating that the likelihood of nitrate contamination of 
ground water increases in areas with fractured rocks.  Rock fractures can readily convey 
contaminants to ground water, even in areas where depth to ground water is greater.  
Water from an aquifer comprising fractured crystalline rocks in southeastern 
Pennsylvania has a median nitrate concentration of 6.6 mg/L, and the nitrate MCL of 10 
mg/L is exceeded in 31 percent of the samples (Nolan and Stoner, 2000).  Median depth 
to ground water in the area is greater (12.8 m) than reported here (4.4 m), but the 
fractured rocks are susceptible to recharge of water and chemicals from the land surface 
(Lindsey and others, 1998).  Land use in the area consists of mixed forest and agriculture, 
and ground water is N-rich near hilltops where the agricultural land is most dense. 

Data from the Upper Devonian aquifer in northern Iowa indicate that nitrate 
concentration in ground water is high in karst areas.  Karst is eroded limestone that 
contains fractures and sinkholes that enhance recharge to aquifers.  Such features make 
the rocks extremely porous, especially in areas where overlying deposits are thin or 
missing.  Median nitrate concentration in ground water was 9.6 mg/L in karst material, 
compared with 6.9 mg/L in very shallow bedrock and <0.1 mg/L in deep bedrock 
(Hallberg and Keeney, 1993).  Surficial recharge delivered nitrate from agricultural areas 
to the Upper Devonian aquifer in the karst and shallow bedrock areas.  Tritium data 
indicated that modern (post-1953) water has migrated into the aquifer to depths greater 
than 30 m in these areas.  In contrast, the deeper bedrock aquifers contain older water 
with significantly lower nitrate concentration. 

 
Conclusions 

Multivariate logistic regression was used in a national-scale analysis to identify 
variables that significantly influence nitrate contamination of shallow, recently recharged 
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ground water.  The LR model predicts the likelihood that nitrate in ground water exceeds 
4 mg/L.  The final model consists of variables representing (1) fertilizer N loading (Wald 
p = 0.012), (2) percent cropland-pasture (p < 0.001), (3) ln(population density) (p < 
0.001), (4) percent well-drained soils (p = 0.002), (5) depth to the seasonally high water 
table (p = 0.001), and (6) presence or absence of a fracture zone within the aquifer (p = 
0.002).  The Wald p-values are highly significant at the 0.05 level.  A goodness-of-fit test 
indicates that the model fits the data very well, and observed and predicted probabilities 
of nitrate contamination are strongly correlated (r2 = 0.971).  The multivariate LR model 
fits the data much better than do any of the preliminary univariate models.  Based on the 
model, nitrate contamination of ground water is not caused by any single factor but 
depends on the combined, simultaneous influence of factors representing N loading 
sources and aquifer susceptibility characteristics. 
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Table 1.  Explanatory variables and descriptive statistics 
 

 
 
 
 

Variable 

 
 
 
 

GIS compilation area 

 
 
 
 

Minimum 

 
 
 
 

Median 

 
 
 
 

Maximum 

 
 

 
Interquartile 

Range 

 
 
 

Number of 
observations 

Nitrogen sources       
N fertilizer loading, kg/ha 500-m well buffer  0.0  27.5 180     64.5 1,230 
Total Na, kg/ha 500-m well buffer  1.1  60.2 224     82.3 1,230 

Cropland-pasture, % 500-m well buffer  0.0  84.9 100     96.8 1,230 

Population density, people/km2 500-m well buffer  0.1  19.8      4,135         165 1,230 
Aquifer susceptibility       
HYDGRP B soils b, % Land-use study area  8.8  41.9     78.4     24.9 1,230 
HYDGRP A and B soils, or “well-drained,” b % Land-use study area        16.1  56.0     87.6     22.9 1,230 
Organic matter in soils, % by wt. Land-use study area  0.1   0.6     10.6       1.1 1,230 
Depth to seasonally high water table, m Land-use study area  0.4   1.5       1.8       0.5 1,230 
Presence or absence of rock fracture (binary 

indicator = 0 or 1) 
Land-use study area          0           0    1   0 1,199 

Artificially drained soils, % Land-use study area  0.0   0.2     39.0      3.2 1,230 
Woodland-to-cropland ratio, %/% 500-m well buffer  0.0   0.0     82.3   0   953 
Depth to top of open interval below water, or 

“sampling depth,” m 
Well point  0.0   2.0        112            5.3 1,054 

Mean annual precipitation, 1961-90, cm Land-use study area 11.7 97.0        138          84.3 1,230 

 
atotal N = sum of N loading from fertilizer, manure, and atmospheric deposition 
bHYDGRP = STATSGO soil hydrologic group 
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Table 2.  Fitting criteria for univariate logistic-regression models 
 

  
 
 
 

Model 

 
 
 

Estimated 
coefficient 

 
 

Likelihood 
ratio (G) p-

valuea 

 
Hosmer-

Lemeshow 
statistic p-

value 

 
 

r2 for obs. 
and pred. 

prob. 

 
 
 

Number of 
observ. 

 Sources      
UV1 N fertilizer loading, kg/ha  0.0082 <0.001 <0.001 0.368 1,214 
UV2 N fertilizer in HYDGRP B soils b, kg/ha  0.0832 <0.001 <0.001 0.586     191 
UV3 N fertilizer in HYDGRP A and B soils b, kg/ha  0.0064 <0.001 <0.001 0.232    757 

UV4 Total Nc in HYDGRP A and B soils b, kg/ha  0.0057 <0.001 <0.001 0.253     757 

UV5 Cropland-pasture, %  0.0115 <0.001   0.005 0.723 1,214 

UV6 Population density, people/km2 -0.0002   0.075 <0.001 0.150 1,214 
 Aquifer susceptibility      
UV7 HYDGRP B soils b, %  0.0379 <0.001 <0.001 0.472 1,214 
UV8 HYDGRP A and B soils, or “well-drained,” b %  0.0362 <0.001 <0.001 0.760 1,214 
UV9 Organic matter in soils, % by wt. -0.1070   0.002 <0.001 0.119 1,214 
UV10 Depth to seasonally high water table, m  1.5939 <0.001 <0.001 0.631 1,214 
UV11 Presence or absence of rock fracture  1.9002 <0.001 -- -- 1,183 
UV12 Artificially drained soils, % -0.0385 <0.001 <0.001 0.357 1,214 
UV13 Woodland-to-cropland ratio, %/% -0.2065   0.001 <0.001 0.741     941 
UV14 Depth to top of open interval below water, or “sampling depth,” m  0.0457 <0.001 <0.001 0.298 1,038 
UV15 Mean annual precipitation, 1961-90, cm -0.0060 <0.001 <0.001 0.086 1,214 

 
afor G = -2(Lo-L), where Lo is for intercept-only model 
bHYDGRP = STATSGO soil hydrologic group 
ctotal N = sum of N loading from fertilizer, manure, and atmospheric deposition 
 



Bernard T. Nolan 19

 
 
 
Table 3.  Fitting criteria for competing multivariate logistic-regression models 
 

  
 

 
Modela 

 
Likelihood 
ratio (G) 
p-valueb 

 
 

Number of 
observations 

 Initial nested comparison    
MV3 fert, welldr, wtdep, sampdep, bfract  -- 987 
MV1 fert, welldr, wtdep, sampdep, bfract, pctcrop   0.001 987 
MV2 fert, welldr, wtdep, sampdep, bfract, pctcrop, frtxsd   0.141 987 
 Reverse selection   
MV4 fert, pctcrop, welldr, wtdep, bfract  -- 987 
MV1 fert, pctcrop, welldr, wtdep, bfract, sampdep   0.661 987 
 Final nested comparison   
MV4 fert, pctcrop, welldr, wtdep, bfract  -- 987 
MV5 fert, pctcrop, welldr, wtdep, bfract, popden <0.001 987 
 
afert = fertilizer N; welldr = percent well-drained soils, or the sum of percentages of soil hydrologic groups A and B; wtdep = depth to 
seasonally high water table; sampdep = sampling depth, or depth to top of well screen or open borehole below water level; bfract = 
binary variable indicating presence or absence of fractured rocks; pctcrop = percent cropland-pasture; frtxsd = interaction between 
fertilizer N and sampling depth; popden = population density 
bG = 2(Lc-Ls), where Lc is more complex, nested model and Ls is simpler model (Helsel and Hirsch, 1992) 
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Table 4.  Explanatory variables in final multivariate logistic-regression model MV6 
 

 
Variable 

Estimated 
coefficient 

Wald 
p-value 

Constant -4.485 <0.001 
Fertilizer N, kg/ha   0.005   0.012 
Cropland-pasture, %   0.015 <0.001 
ln(population density), ln(people/km2)   0.194 <0.001 
Well-drained soilsa, %   0.017   0.002 
Depth to season. high water table, m   0.850   0.001 
Presence or absence of rock fracture   1.033   0.002 
 
asum of percentages of soil hydrologic groups A and B in area 
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Wells in NAWQA land-use studies conducted during 1992-1995

Figure 1.  Locations of shallow wells sampled as part of NAWQA land-use 
studies conducted during 1992-1995. 
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(a) 

r2 = 0.760 

Figure 2.  Linear regression fit of observed and predicted probabilities of 
nitrate exceeding 4 mg/L in shallow ground water, for univariate logistic-
regression models representing (a) percent well-drained soils and (b) percent 
organic matter in land-use study areas. 
 

(b) 

r2 = 0.119 
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r2 = 0.971 

Figure 3.  Linear regression fit of observed and predicted probabilities of 
nitrate exceeding 4 mg/L in shallow ground water, for final multivariate 
logistic-regression model MV6. 
 


