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Abstract

Characterigtics of nitrogen loading and aquifer susceptibility to contamination were
evauated to determine their influence on contamination of shalow ground water by
nitrate. A set of 13 explanatory variables was derived from these characterigtics, and
varidbles that have a significant influence were identified using logidtic regression (LR).
Multivariate LR models based on more than 900 sampled wells predicted the probability
of exceeding 4 mg/L of nitrate in ground weter. Thefina LR modd congds of the
following varigbles (1) nitrogen fertilizer loading (p-vaue = 0.012), (2) percent
cropland-pasture (p < 0.001), (3) naturd log of population dengity (p < 0.001), (4)
percent well-drained soils (p = 0.002), (5) depth to the seasondly high water table (p =
0.001), and (6) presence or absence of afracture zone within an aguifer (p = 0.002).
Variables 1- 3 were compiled within circular, 500-m radius areas surrounding sampled
wells, and variables 4-6 were compiled within larger areas representing targeted land use
and aquifers of interest. Ftting criteriaindicate that the full logistic-regresson modd is
highly significant (p < 0.001), compared with an intercept-only modd that contains none
of the explanatory variables. A goodness-of-fit test indicates that the mode fits the data
very well, and observed and predicted probabilities of exceeding 4 mg/L nitrate in ground
water are strongly corrdlated (r* = 0.971). Based on the multivariate LR mode,
vulnerability of ground water to contamination by nitrate depends not on any single
factor but on the combined, Smultaneous influence of factors representing nitrogen
loading sources and aquifer susceptibility characteritics.
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Introduction

Ground water provides drinking water for more than one-hdf of the peoplein the
United States, and accounted for 39 percent of water withdrawn to supply cities and
towns and 96 percent of water withdrawn by private usersin 1990 (Solley and others,
1993). Thisimportant nationd resource is vulnerable to contamination by chemicals,
including nitrate, that can pass through soil to the water table. Mgor sources of nitrate in
watersheds of the U.S. include inorganic fertilizer, anima manure, and atmospheric
deposition (Puckett, 1994). Nitrate is soluble in water, can easily leach through soil, and
can persst in shalow ground water for decades.

Elevated concentrations of nitrate in drinking water are a cause for concern.
Ingestion of nitrate by infants can cause low oxygen levelsin the blood, a potentidly fata
condition (Spalding and Exner, 1993). Other adverse hedth effects potentialy related to
ingestion of nitrate in drinking water include spontaneous abortions and non-Hodgkin's
lymphoma. Nitrate concentrations of 19-29 milligrams per liter (mg/L) in rurd, domegtic
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wellsin Indiana might have caused eight spontaneous abortions among four women
during 1991-1994 (Centers for Disease Control and Prevention, 1996). Nitrate
concentrations of 4 mg/L or more in water from community wellsin Nebraska have been
associated with increased risk of non-Hodgkin's lymphoma (Ward and others, 1996).
The U.S. Environmenta Protection Agency (USEPA) has etablished a maximum
contaminant level (MCL) of 10 mg/L nitrate as nitrogen (N) (U.S. Environmentd
Protection Agency, 1995). Shalow ground water unaffected by human activities
commonly contains lessthan 2 mg/L of nitrate (Mueler and Helsdl, 1996).

Determining where ground weter is & risk of nitrate contamination can dert
managers of the need to protect water supplies. Approachesto ng aquifer
vulnerability to contamination include overlay and index methods, process-based
samulation modeds, and datistical methods. Advantages of satistica methods are that
they are inherently flexible, can readily accommodate differencesin spatial scale, and can
effectively describe uncertainty (National Research Council, 1993).

Factors that influence contaminant behavior vary widely at large spatid scaes,
which complicates efforts to moded aquifer vulnerability. Additiondly, “water qudity is
amultivariate concept” (Riley and others, 1990) that cannot be summarized by any single
condtituent or factor. Multiple factorsinfluence nitrate behavior in ground water at
internationd, regional, and local scaes. Nitrogen dose, crop type, soil texture, and
ground-water level were empiricaly related to nitrate leaching from topsoil and ground-
water nitrate concentration in Europe for the purpose of congtructing vulnerability maps
(Menardi and others, 1995). D’ Agostino and others (1998) observed that nitrate
concentration in ground water benesth the LuccaPlain, Itdy, varied substantidly
depending on loca agricultura practices, proximity to the Serchio River, and the
presence of a confining layer. At the locd scale, overwinter cover cropping and delayed
plowing generaly decreased nitrate leaching from a cacareous loam soil in Eastern
England (Davies and others, 1996).

In previous research in the United States (Nolan and Stoner, 2000), relations between
ground-water nitrate concentration and potentia explanatory variables were analyzed in
smple univariate fashion, resulting in condderable unexplained variation in nitrate
concentration. For example, a plot of median nitrate concentration in shalow ground
water versus median N load from fertilizer, manure, and atmaospheric sources showed
generdly increasing nitrate response to N loading but exhibited considerable scatter. The
vaidion in nitrate response was attributed in part to areas with well-drained soils or
fractured bedrock, which can readily convey even smal amounts of applied N to the
water table, and to areas with poorly drained soils that impede nitrate movement to
ground water even when N load ishigh. Thus, indluding a variable such as soil-drainage
characterigtic in the andyss would explain additiond variation.

Multivariate getisticd methods can improve on univariate anayss by
smultaneoudy consdering the influence of N loading, soil-drainage characteristic,
presence/absence of fractured rocks, and other variables on nitrate concentration in
ground water. In this paper, logigtic regresson (LR), amultivariate satistical method,
was used to interpret ground-water nitrate data collected as part of the U.S. Geological
Survey’s National Water-Quality Assessment (NAWQA) Program during 1992-1995.
Logidtic-regresson modes containing one (univariate) or more (multivariate)
explanatory variables were used to predict the likelihood of exceeding 4 mg/L nitratein
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ground waters of the United States. The objective of this research was to apply
multivariate LR to the NAWQA data st to identify variables that in combination
sgnificantly influence nitrate concentration in shalow, recently recharged ground water.

Background

Logidtic regression has been used extensively in epidemiologica sudiesand is
becoming more commonplace in the environmenta sciences. Logidtic regression differs
from cdlasscd, linear regresson in thet the modeled response is the probability of being
in acategory, rather than the observed quantity of a response variable (Helsel and Hirsch,
1992). The main assumption of LR isthat the natura logarithm of the odds ratio
(probaility of being in aresponse category) islinearly related to the explanatory
variables (Afifi and Clark, 1984). Regression coefficients are estimated using the method
of maximum likelihood.

Because athreshold vaue is specified to define the response categories, LR iswell-
suited to andysis of non-detects. Nearly 20 percent of shalow ground-water samples
collected by NAWQA have nitrate concentration below the detection limit of 0.05 mg/L.
Additionally, Tesoriero and others (1998) found that LR yielded sgnificant relations (p £
0.05) between explanatory variables and nitrate concentration in ground waters of the
Puget Sound Basin, northwestern Washington, whereas linear regression did not.
Variaion in nitrate concentration was such that predicting the probability of devated
nitrate concentration was more feasible than predicting a specific concentration.

The oddsratio is based on the probability of exceeding a given threshold vaue:

odds ratio = P @
1-p

where
p = probability of exceeding the threshold value

Thelog of the odds ratio, or logit, transforms a variable constrained between 0 and 1
into a continuous, unbounded variable that is alinear function of the explanatory
variables. Theresulting LR equation is (Helsel and Hirsch, 1992)

6 p U
|oggl_pp8:bo+bx )

where
bo = congtant
bx = vector of dope coefficients and explanatory variables

The logigtic transformation converts the predicted values of the response variable back
into probability units (Helsd and Hirsch, 1992):
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Thelikelihood ratio test gatidtic (G) tests the Satistica significance of coefficientsin
the LR modd (Hosmer and Lemeshow, 1989; Tesoriero and Voss, 1997):

G=-2(Ly - Liow) (4)

where
Lint = log-likelihood of intercept-only modd
Lmode = log-likelihood of mode with one or more explanatory variables

The G gatidtic is chi-square distributed under the null hypothesis that dope coefficients
for the explanatory variablesin the modd equa zero. For nested moddls, G isused to
determine the significance of adding one or more new explanatory variables to amodd.
A nested modd contains al of the explanatory variablesin the smpler modd, plus one or
more additiona variables. The degrees of freedom equals the number of additiond
variablesin the more complex model (Helsdl and Hirsch, 1992).

The Wdd datidtic istheratio of the maximum likelihood estimate of the dope
coefficient to its tandard error (Hosmer and Lemeshow, 1989). It is normdly distributed
and its p-vaue indicates whether the dope coefficient is Sgnificantly different from zero.
When one additiona variable is introduced into an LR model, the square of the Wald
datigtic is goproximatdy chi-sgquare distributed with one degree of freedom (K leinbaum,
1994). The G datistic and the corresponding squared Wald statistic yield gpproximately
the same vaue in very large samples.

Wadd and G gatistics were used in this study to build an optima modd, and the
Hosmer-Lemeshow (HL) goodness-of-fit datistic was then used to see how well the
mode fit the data. The G datistic is emphasized in mode building because it compares
“the observed vaues of the response varigble to predicted values obtained from models
with and without the variable in question” (Hosmer and Lemeshow, 1989). In contrast,
the HL statistic compares observed va ues to those fitted under one mode!.

The HL datistic compares observed and predicted probabilities for data grouped
from low to high by vaues of the predicted probabilities. Ten groups (deciles)
commonly are used, with the first group comprising the /10 observations with the
amallest predicted probabilities, and the last group containing the n/10 observations with
the largest predicted probabilities (Hosmer and Lemeshow, 1989). Each group yiddsan
average predicted probability and an observed probability based on the number of
observed vaues in the group that are greeter than the threshold value. The HL datidtic is
chi-squared distributed and, because the null hypothesisisthat the modd fits the data,
higher p-vaues indicate better fit.

Prior studies show that LR can successfully identify variables that sgnificantly affect
ground-water quaity. Eckhardt and Stackelberg (1995) used logitic regression to
predict the probability of exceeding 3 mg/L of nitrate in ground water beneath
agricultura, suburban, and undeveloped areas of Long Idand, New York. Explanatory
variables conssted of population dengty, percent medium-dengty resdentia land use,
percent agricultura land use, and depth to the water table. Population and land-use data

Bernard T. Nolan 4



were compiled within 0.80-kilometer (km) radius circular areas surrounding each well to
reflect the influence of recent (within Sx years) land use on ground-water quaity. Rank
correlations between predicted probabilities and observed responses were used to
evauate model performance. Rank correlations range from zero (no fit) to one (perfect
fit). The LR models developed for nitrate had rank correlation coefficients of 0.87—0.88
and indicated that nitrate concentration generally increased as population dengty and
percent residential and agricultura land use increased, and as the depth to the water table
decreased.

Tesoriero and Voss (1997) used LR to predict the likelihood that nitrateis present in
concentrations of 3 mg/L or more in ground waters of the Puget Sound Basinin
northwestern Washington. Variables evauated included well depth, ground-water
recharge, soil hydrologic group, surficid geology type, land-use type, and population
densty. Wl depth, surficid geology, and percentages of agricultura and urban lands
within 3.2 km of sampled wells best explained eevated nitrate concentration in ground
water. Nitrate data from more than 3,000 wells were used to develop and vdidatethe LR
modd.

Rupert (1998) used separate LR models to predict the probability of detecting
arazine/desethyl-atrazine and the likelihood of nitrate concentration exceeding 2 mg/L in
ground waters of the Upper Snake River Basin in southeastern Idaho. The first model
indicated that land use, precipitation, soil hydrologic group, and well depth were
sgnificantly related to atrazine/desethyl- atrazine detections. The second modd indicated
that depth to water, land use, and soil drainage were significantly related to elevated
nitrate concentration. The best fitting pesticide modd resulted in strong correlation
(linear correlation coefficient = 0.960) between observed rates of atrazine/desethyl-
atrazine detection and probabilities of detection predicted by the modd!.

Teso and others (1996) used LR to predict the probability of occurrence of DBCP (a
nematicide) in ground water beneath land sections of eastern Fresno County, California
Soil partidle-sze dasses (e.g., sandy, loamy) were used as independent variablesin the
model-building process. The resulting model was satistically sgnificant (p = 0.017) and
included sandy and fine particle-Sze classes. The model correctly predicted the
contamination status of contaminated sections 89.7 % of the time, but the overall success
rate (considering both contaminated and uncontaminated sections) was only 53.2 %. The
overal success rate might have been affected by the smal number of samples associated
with the uncontaminated sections.

M ethods

The data set used for this paper comprises 1,230 wells sampled during selected land-
use studies conducted in the first 20 NAWQA study aress (caled “ study units’) (Figure
1), which started in 1991 and sampled ground water during 1992-1995. “Land-use
gudies’ evauate the quality of recently recharged ground water (generally less than 10-
years old) in regions that represent the intersection of atargeted land use and an aquifer
of interest. Each study unit typicaly contains one or more land-use studies. The 54
shdlow land-use studies used in this research typicaly comprise 20-30 wells each and
range in size from 146 to 62,900 kn? (median areais 4,370 knf). Wells sampled in land-
use sudies usudly are ingtaled by NAWQA, and public-supply wells are avoided
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because of uncertaintiesin the location of the recharge area. Springs and agricultura
drains were excluded from the andysis because of uncertainties in the source of water
and/or contributing land-use area. To preclude undue influence on results by wells that
were sampled severa times, only one sample per well was used in statistical analyses.

The sample sdected for analys's represents the date that the land-use study network was
sampled by NAWQA for alarge suite of water-quality parameters, which occurs once per
high-intengity phase of study. Isolated follow-up samples (e.g., for alimited number of
parameters to assess seasond trends) were not considered because these dates vary
widely and do not reflect the network sampling date.

All wells were sampled according to procedures described by Koterba and others
(1995). Nitrite-plus-nitrate was andyzed by the USGS Nationd Water Qudity
Laboratory using procedures described in Fishman (1993), and reported concentrations
are based on elemental N (e.g., NO2” plusNOs™ asN). Nitrite-plus-nitrate concentration
is referred to in this paper as “ nitrate’ because nitrite contribution to nitrite- plus-nitratein
ground water generdly is negligible (Nolan and Stoner, 2000).

Characterigtics of N loading and aquifer susceptibility to contamination and their
influence on nitrate concentration in shalow ground water were evauated by developing
a et of explanatory variables (Table 1) for usein LR. To develop the N-loading
variables, 1991-1993 data representing atmospheric deposition, anima manure (1992
only), and commercia fertilizer sources were compiled by land use within circular, 500-
meter (m) radius areas surrounding sampled wells. Fertilizer N was apportioned equaly
to agriculturd and urban land within 500 m of sampled wells to account for resdentia
fertilizer use. Use of residentid fertilizer isintengve in heavily populated areas such as
Long Idand, New Y ork, where estimated annua application rates are as high as 180
kg/hectare (ha) (Porter, 1980). Manure N was gpportioned to agriculturd land only, and
atmospheric N was assumed independent of land use within 500 m of sampled wells. See
Nolan and Stoner (2000) for detailed discussion on compilation of N loading variables
and other ancillary data. Fertilizer N was consdered separately and in combination with
manure N and atmospheric N to assess “total N” contribution. In addition to N-loading
data, the percent of Anderson Levd |1 cropland-pasture (Anderson and others, 1976) and
1990 population dengity (U.S. Bureau of the Census, 1991) within 500 m of sampled
wells were used as measures of agricultura and urban intengty, respectively. The
Anderson land- use data were updated with 1990 Census population data to indicate
recent conversion of agriculturd land to new residentid land (Hitt, 1994). Population
dengity was used as a surrogate for nonagricultural sources of N in urban aress.

Aquifer susceptibility variables such as soil hydrologic group (HY DGRP), depth to
the seasonally high water table, and percent organic matter were compiled from State Soil
Geographic (STATSGO) data (Soil Conservation Service, 1994) as weighted averages
within aress representing NAWQA land-use studies (Table 1), using methods described
in Nolan and Stoner (2000). These variables were compiled within land-use study areas
because the STATSGO mapping units typicaly are much larger than the 500-m radius
circular areas used to compile land-use attributes. STATSGO attributes do not vary
gppreciably within the smal circular areas and the resulting estimate would have
resembled a point estimate rather than aweighted average.

Percentages of soil HYDGRPs A and B in land-use study areas were summed to
represent “well-drained” soils (Table1). Soilsin HYDGRP A are defined as “deep, well
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drained to excessively drained sands or gravels,” and HY DGRP B soils are defined as
“moderately deep to deep, moderately well drained to well drained soils that have
moderately fine to moderately coarse textures’ (Soil Conservation Service, 1993). Depth
to the seasondly high water table represents the average, minimum unsaturated zone
thicknessin aland-use study area.

Percent organic matter was used to represent denitrification potentia in aquifers
(Table 1). It was hoped that percent organic matter in combination with depth to the
seasondly high water table in a multivariate model would indicate conditions conducive
to denitrification. Denitrification isamicrobialy asssted process thet transforms nitrate
to N2 gas under reducing conditions when organic matter and/or selected reduced
minerals are present (Korom, 1992).

A binary variable indicating presence or absence of fractured rock in aland-use
Sudy areawas coded “1” if the aquifer associated with a given land- use sudy consists of
fractured rocks and “0” if it doesnot (Table 1). Dataindicating the presence or absence
of rock fractures were compiled from lithologic descriptions of each land-use study area
after consulting with local NAWQA personnd (DanaW. Kolpin, USGS, unpublished
data, 2000).

The percent atificidly drained soilsin land-use study areas (Table 1) was
determined by compiling 1992 National Resources Inventory data (Soil Conservation
Service, 1994) in a geographic information system (GIS) (Kerie J. Hitt, USGS,
unpublished data, 1998). Woodland-to-cropland ratio was calculated by dividing
combined percentages of Anderson Level 1l deciduous forest, evergreen forest, and
mixed forest lands within 500 m of sampled wells by combined percentages of cropland-
pasture, orchards, groves, vineyards, nurseries, ornamenta horticultural aress, and
confined feeding operations.

The depth to the top of the open interva (well screen or open borehole) below water
leve (“sampling depth” in Table 1) was calculated by subtracting depth to ground water
from open interva depth, for wellsin which open interva depth is greater than depth to
water. If openinterva depth islessthan or equa to depth to ground water, then sampling
depth was set to zero. I1n unconfined aquiferstypica of land-use studies, sampling depth
represents the distance from the water-table surface to the top of the open interval.
Deeper sampling depths generdly correspond to older ground water, which islesslikely
to show effects from recent land use.

Mean annud precipitation within land-use study areas was compiled in a GIS by
David M. Wolock (USGS, unpublished data, 1998) for the period 1961-1990 (Nationa
Climatic Data Center, 1994) (Table 1). The precipitation data were used to represent the
potentia for ground-water recharge, which influences nitrate transport through the
unsaturated zone.

Destriptive gatistics in Table 1 include the median and interquartile range. Medians
were used as a measure of central tendency because they are resstant to the effects of
outlierstypical of skewed datasets. Similarly, the interquartile range (75" percentile
minus the 25" percentile) is a resistant messure of spread. 1t consists of the middle 50
percent of the data; thus it is not influenced by the 25 percent at either end (Helsel and
Hirsch, 1992).

Logistic regression was used to predict the likelihood that nitrate concentration in
shdlow ground water exceeds 4 mg/L. Thisvaue indicates effects of human activities
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on ground-water quality and aso has hedth sgnificance¥s the 4 mg/L level has been
associated with increased risk of non-Hodgkin's lymphomain Nebraska (Ward and
others, 1996). Model-fitting criteriaevauated in this Sudy consst of the likelihood ratio
test gatigtic (G), the Wald datigtic, and the Hosmer-Lemeshow goodness- of-fit test
gatigic. Explanatory variablesin the find mode are considered to most influence nitrate
concentration in shallow ground water, based on this data set.

Linear regression was used as an additiona indicator of goodness-of-fit to compare
observed and average predicted probabilities associated with the deciles used to caculate
the HL statistic. The coefficient of determination (r2) was computed for the observed and
predicted probabilities, with higher r? vauesindicating better fit. In ardated qualitative
check, predicted and observed probabilities were plotted and visually compared with a
1:1 line having an intercept of zero. If dl of the pointsfel on the 1:1 line, then the
predicted and observed probabilities would agree perfectly.

Results and Discussion

Univariate Logistic-Regression Models

Univariate LR modes were developed for the explanatory variablesin Table 1 to
screen variables for incluson in subsequent multivariate models. Some of the univariate
models are designed to test multiple influences on nitrate contamination of ground water
to help identify combinations of variables for use in subsequent multivariate models. For
example, modds congging of fertilizer loading in HY DGRP B soils (UV2) and in
HYDGRP A and B soils (UV3) investigate the influence of N loading in moderately
wedl-drained to well-drained soils (Table 2).

All of the univariate models except UV 6, conssting of population dengity (G satistic
p-vaue = 0.075), are datidticdly sgnificant a the 0.05 leve (Table 2). All of the
univariate modds, however, have very low HL p-vaues, indicating that nonefit the deta
well. The highest HL p-vaue, only 0.005, isfor modd UV5 (percent cropland-pasture).
(Higher HL p-vauesindicate better fit because the null hypothesisis that the modd fits
the data.)

The strength of correlation between observed and predicted probabilities
corresponding to deciles of risk was used as an additiond indicator of goodness-of-fit to
help sdlect variables for indusion in an initid multivariate LR modd. Ther? values
range from 0.086 for model UV 15 (precipitation) to 0.760 for model UV 8 (percent well-
drained soils) (Table 2). Figure 2 shows how linear-regression r? indi cates degree of
logigtic-regresson mode fit. Observed and predicted probabilities associated with model
UV8 (r? = 0.760) generaly follow the exact-fit 1:1 line, indicating reasonable agreement
between observed and predicted probabilities (Figure 2a). In contrast, observed and
predicted probabilities for model UV (r? = 0.119) deviate sharply from the 1:1 line
(Figure 2b), indicating poor fit.

Multivariate Logistic-Regression Models

Explanatory variables from the best-fitting univariate models were combined into an
initid multivariate LR modd (MV 1) to evaduate the smultaneous influence of varigbles
that sgnificantly affect nitrate contamination of shalow ground water. The G gatistic
and strength of correlation between observed and predicted probabilities were used to
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sdect variables for incdluson in the multivariate modd. Univariate modds congsting of

the following variables had satistically significant G statistics (p-value <0.05) and/or r?
vaues of about 0.6 or greater, indicating reasonable correl ation between observed and
predicted probabilities: (1) fertilizer N in HY DGRP B s0ils, (2) percent cropland- pasture,
(3) percent well-drained soils, (4) depth to seasondly high water table, (5) sampling
depth, and (6) presence/absence of arock fracture (Table 2). Ther? vauefor ssmpling
depth is only 0.298, but a plot of observed and predicted probabilities appears reasonable
except for three points that are somewhat removed from the superimposed 1:1 line
indicating exact fit. Thisvariable also was retained to explore a potentia interaction with
N fertilizer loading. Woodland-to-cropland ratio has a high r* value (0.741), but was not
retained because it was caculated using percent cropland- pasture, which is dready in the
model, and because visual inspection of the plot of observed and predicted probabilities
reveded apoor fit. Haf the points are well removed from the superimposed 1:1 line.

Multivariate modd MV 1, congting of fertilizer N and variables 2-6 above (Table
3), yidded an HL p-vaue of 0.067 and thus fits the data somewhat better than the
univariste modes; but the fit could be much improved. Modd MV1 has ahighly
ggnificant G datigtic p-vaue (p < 0.001), compared with the intercept only modd that
contains none of the explanatory variables.

The presence of both fertilizer N and percent cropland-pasturein model MV 1 raises
potentia multicollinearity concerns. Multicollinearity arises when two or more
explanatory variables are closdly related, and can result in unredistic modd coefficient
sgn, unstable dope coefficients, and other problems (Helsdl and Hirsch, 1992). If
multicollinearity were present, however, the standard error of both fertilizer N and
percent cropland- pasture (indicated by the Wald p-vaues) would be very large because
the LR modd would not be able to sdlect from among the two variables (Gregory E.
Schwarz, USGS, unpublished data, 2000). Wald p-vauesfor mode MV1 are highly
sgnificant for both fertilizer N (0.041) and percent cropland-pasture (0.001), dispelling
multicollinearity concerns. Percent cropland-pasture gpparently contains information not
embodied infertilizer N, such as N loading from manure, atmospheric deposition, septic
systems, or other sources. Additionally, percent cropland-pasture incorporates
information on crop type and tillage practice, which affect N transformationsin soil and
the efficiency of N uptake by crops.

Excluson of “totad” N (comprising fertilizer, manure, and atmospheric deposition
sources) from model MV 1 does not mean that manure and atmospheric deposition are
inggnificant as N sources. Compared with inorganic fertilizer, manure and atmospheric
depaosition contribute lesser amounts of N annually in the United States (Puckett, 1995)
but are important regiona sources. Additiondly, these variableslikely are reflected in
the percent cropland- pasture variable. Thefertilizer N variable was sdected based on
datistica performance with the NAWQA nationa data set.

Nested Multivariate Logistic-Regression Models

Nested LR models were tested to seeif addition or removal of asingle variable
would sgnificantly affect mode performance. Modelsin Table 3 are shown in order of
nesting¥s each successive mode within a category (eg., “initid nested comparison”)
includes one additiond variable. All modeds shown in Table 3 consst of 987
observations to facilitate unbiased comparisons of modd-fitting criteria
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The difference between models MV 1 and MV 3 isthat MV 1 contains the percent
cropland-pasture variable and MV 3 does not, providing an additiona check on potentia
multicollinearity between fertilizer N and percent cropland-pasture. The G datistic for
MV 1 (p-vaue = 0.001) indicates that the nested modd containing percent cropland-
pasture is Sgnificantly improved over MV 3 at the 0.05 leve (Table 3).

An interaction term was tested with modd MV1 to seeif mode performance could
beimproved. An interaction is present when a covariae (e.g., age) modifies the effect of
arisk factor (e.g., gender) on outcome (Hosmer and Lemeshow, 1989). For example, the
effect of gender on outcome depends on the age at which the gender comparison is being
made. Modd MV 2 contains the interaction term fertilizer N* sampling depth to test
whether the effect of fertilizer loading on nitrate contamination of ground water depends
on sampling depth within the agquifer (Table 3). Degper sampling depths represent older
ground water, which islesslikely to show effects from recent fertilizer application
(Nolan and Stoner, 2000). The G datigtic p-value for model MV 2, however, is0.141,
indicating that the modd is not sgnificantly improved over MV1 a the 0.05 leve.
Because NAWQA land-use studies are designed to sample shallow, recently recharged
ground-water, sampling depth might not vary sufficiently to influence nitrate
concentration. The interquartile range of sampling depth (5.3 m) is comparatively low.
Additionaly, the Sgn of the sampling depth coefficient used to calculate the interaction
term is pogitive (0.001) in model MV 1 and negative (-0.005) in MV 2, and the Wad p-
vaues for sampling depth are high for both models (0.660 and 0.417). For these reasons,
the interaction term was excluded from subsequent multivariate models.

Reverse sdlection was attempted to see if removing sampling depth (Wad p-vdue =
0.660) from mode MV 1 would improve performance. Reverse-sdlection resultsin Table
3 are shown in forward order to alow comparison of G statistics associated with nested
models MV4 and MV1. The G datistic p-value for modd MV 1 is 0.661, indicating that
sampling depth is gatiticaly inggnificant at the 0.05 level. Wad p-vaduesinthe
resulting model (MV4) are lessthan 0.05 for dl explanatory variadbles. Modd MV 4 is
considered better than MV 1 based on the highly sgnificant Wad p-va ues associated
with the explanatory variables.

Asafina check, the remaining explanatory variables rejected as part of univariate
modd screening each were introduced into modd MV 4 to seeif they could improve
model performance and, in the case of population densty, attain statistical significance.
With the exception of population dendity, the remaining variables yieded inggnificant
Wald p-vaues ranging from 0.19 (mean annud precipitation) to 0.91 (percent organic
matter in soils). Inclusion of population density (modd MV 5), however, yidded aG
datigtic p-vaue of <0.001, indicating that MV 5 is sgnificantly improved over modd
MV4 (Table 3). Additiondly, the HL p-vaue of 0.377 is much improved over that of
initid multivariate mode MV 1 (p = 0.067).

It isimportant to check the assumption of linearity in the logit after selecting
variables for indusion in alogidic-regresson modd (Hosmer and Lemeshow, 1989).
Naturd log (In) trandformation of population density (modd MV 6 in Table 4) resulted in
amore linear response of the logit function and yielded an HL p-value of 0.641,
considerably improved over that of modd MV5 (p = 0.377).

Evduaing HL p-vauesis somewhat subjective because little information exists on
what range of vaues congtitute acceptable fit. In astudy of risk factors associated with
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low birth-weight infants, an HL p-value of 0.73 indicated that an LR modd fit the data
“quite well” (Hosmer and Lemeshow, 1989). In the current paper, the HL p-vaue of
0.641 is consdered evidence of good fit based on visual comparison of plotted observed
and predicted probabilities for deciles of risk, and the associated linear-regression r?
vaue. The observed and predicted probabilities follow close to the 1:1 exact-fit line
(Figure 3), and the r? value of 0.971 indicates strong correlation. Model MV6 (Table 4)
is consdered “best” according to study objectives and fitting criteria emphasized in this
sudy.

Final Multivariate Logistic-Regresson Model and Related Explanatory Variables

Of the explanatory variables initially condgdered, thosein MV6 are consdered to
mogt ggnificantly influence nitrate contamination of shallow ground water, based on the
data set used in this study. Model MV 6 conssts of variables representing (1) fertilizer N
loading (p-value = 0.012), (2) percent cropland-pasture (p < 0.001), (3) In(population
dengity) (p < 0.001), (4) percent well-drained soils (p = 0.002), (5) depth to the seasonaly
high water table (p = 0.001), and (6) presence or absence of afracture zone within an
aquifer (p = 0.002) (Table 4). The Wad p-vaues associated with these variables are
highly sgnificant at the 0.05 leve.

Thefirgt three variables represent N source terms and the last three variables
represent aquifer susceptibility to contamination. Together, they form a conceptua
mode of aguifer vulnerability congting of N loading to the land surface followed by
transfer of nitrate to ground water through the unsaturated zone. 1n this modd, the
degree to which nitrate from aboveground N sources leaches to ground water is
influenced by soil type, weter-table position, and the presence or absence of fractured
rocks.

Sope coefficients for fertilizer N (0.005), percent cropland- pasture (0.015), and
In(population dengity) (0.194) are pogtive (Table 4), indicating thet the likelihood of
nitrate contamination of ground water increases with increasing levels of N sources. This
agrees with prior logigtic-regresson studies in which the probability of nitrate
contamination of ground water increased with increasing percentages of agricultura land
near sampled wells (Eckhardt and Stackelberg, 1995; Tesoriero and Voss, 1997).
Reations between fertilizer N, extent of agriculturd land, and nitrate concentration in
ground water are well documented. Hall (1992) analyzed N applications and nitrate
concentrations for five wells on afarm in the Conestoga Valey of southeastern
Pennsylvania He observed cause-and- effect relations between changes in rates of
applied N in manure and fertilizers and changes in ground-water nitrate concentration,
indicating that a significant amount of the applied N is trangported with recharge to
ground water within four to 19 months after gpplication. Ground-waeter nitrate
concentration generdly decreased after implementation of nutrient management plans
that saw reductions of N application rates. Time-series dataindicated a close reation
between applied N and nitrate in ground water, and correlations between applied N and
ground-water nitrate were Satisticaly sgnificant at the 90-percent confidence leve for
al fivewdls

Hallberg and Keeney (1993) cited studies that found a direct relation between
agriculturd land use and nitrate in ground water. As evidence they cite 3- to 60-fold
increases of nitrate observed in ground water in agricultura areas, whereas ground water
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beneath forestland, grasdand, and even pastured areas generally contained less than 2
mg/L nitrate. They describe sgnificant positive correlations between nitrate
concentrations in ground water and the percentage area of fertilized crops and with N
fertilizer gpplication rates in the vicinity of sampling Stes. Additiondly, abasn-scae
study showed ground-waeter nitrate increasing in direct proportion to increasing fertilizer
use. Nitrogen amounts contributed by rainfal, crop rotation, and soil minerdization were
considered in the N budget for the basin.

Nolan and Stoner (2000) showed that nitrate concentration in shalow ground water
beneath urban |ands generdly increased with increasing population dengity. Median
nitrate concentration was as high as 5.4 mg/L in aress of the Willamette Basin near
Portland, Oregon. The population of Portland, the stat€’ s largest metropolitan area, was
about 1.2 million people in 1990, and median population density within 500 m of
sampled wellsin the areawas 2,300 people/kn?. Areas with more than 386 people/kn?
are considered “urban,” based on GIS analysis of 1990 Census data and Anderson land-
use data (Hitt, 1994).

Domestic sewage and residentid fertilizer are mgjor sources of N in some heavily
populated aress. Septic systems and cesspools have long been sources of nitrate in
ground waters of Long Idand, New Y ork, and turf grassisthe mgor crop in Nassau
County (Porter, 1980). Annua application rates of N fertilizer to resdentid lawnsin the
arearanged from an estimated 80 to 180 kg/hain the mid 1970s.

Aquifer susceptibility termsin mode MV 6 comprise percent well-drained soils,
depth to the seasondly high water table, and the presence or absence of arock fracture.
The dope coefficient for percent well-drained soilsis positive (0.017), indicating that the
likelihood of nitrate contamination of ground water increases with better drainage (Table
4). Thisresult agrees with prior research. Tesoriero and VVoss (1997) showed that the
predicted probability of nitrate contamination of ground water in the Puget Sound Basin
is greater for shalow wellsin coarse-grained glacid deposits than for shdlow welsin
fine-grained glacia depodgitsand in dluvium. Rupert (1998) found that STATSGO soil
hydrologic group sgnificantly improved multivariate LR modds used to predict
contamination of ground water by atrazine/desethyl-atrazine, and that STATSGO soil
drainage characterigtic significantly improved models for predicting nitrate contaminetion
of ground water. Soil drainage data from STATSGO denote the frequency and duration
of periods when soil is free from saturation (Soil Conservetion Service, 1994). Poorly
drained soils commonly are saturated and can have reducing conditions conducive to
denitrification, which lessens the likelihood of nitrate contamination of ground water.
Similarly, Burkart and others (1999) observed that nitrate concentration in shalow,
unconfined aguifers was negatively correated with STATSGO HY DGRP C soils, which
have moderately fine to fine soil texture and contain alayer that restricts downward
movement of water (Soil Conservation Service, 1993). In addition to promoting
conditions conducive to denitrification, HY DGRP C soils more likely are artificidly
drained for improved crop production, which diverts nitrate in infiltrating ground water to
nearby streams (Burkart and others, 1999).

The dope coefficient for depth to the seasondly high water table in mode MV6 is
positive (0.850) (Table 4), indicating that as depth increases, the likelihood of nitrate
contamination increases. This result agrees with findings by Burkart and others (1999),
who observed a positive correlation between STATSGO seasondly high water table and
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nitrate concentration in shallow, unconfined aquifers. Theseresults at first seem
counterintuitive because increasing depth to water generdly involves gregter travel
distance and potentia to encounter intervening, less permeable layers that inhibit
leaching. The NAWQA land-use studies, however, are designed to consstently sample
shallow, recently recharged ground water (median depth to water = 4.4 m for this data
set). Because depth to ground water is uniformly shalow, travel disanceis minima and
the potentia for intervening layersislow. Very shalow depth to ground water cregtes
anoxic conditions, which promote denitrification (Béhlke and Denver, 1995; Nolan,
1999; Spruill and others, 1998). Denitrification is fueled by organic maiter and selected
reduced minerals under anoxic conditions. Increasing depth to the water table reduces
the likelihood that soils are saturated, lessening denitrification potentid and increasing
the likelihood of nitrate contamination of ground water. Korom (1992) provides detailed
discussion of denitrification in the saturated zone of aguifers.

An additiond explanation for the positive sgn of the dope coefficient for depth to
the seesondly high water tebleisthat agriculturd land is more likely found on well-
drained soils than on poorly drained soils. The Spearman correlation between percent
cropland- pasture and depth to the seasondly high water table is 0.19, for the data set used
inthissudy. The pogtive corrdation suggests that use of agriculturd chemicasis
greater in areas with more well-drained soils (i.e., with greater depth to ground water),
increasing the likelihood of nitrate contamination of ground weter in these arees.

The dope coefficient in modd MV 6 for presence or absence of afracture zoneis
pogitive (1.033) (Table 4), indicating thet the likelihood of nitrate contamination of
ground water increases in areas with fractured rocks. Rock fractures can readily convey
contaminants to ground water, even in areas where depth to ground water is gregter.
Water from an aquifer comprising fractured crystaline rocks in southeastern
Pennsylvania has a median nitrate concentration of 6.6 mg/L, and the nitrate MCL of 10
mg/L isexceeded in 31 percent of the samples (Nolan and Stoner, 2000). Median depth
to ground water in the areais greater (12.8 m) than reported here (4.4 m), but the
fractured rocks are susceptible to recharge of water and chemicals from the land surface
(Lindsey and others, 1998). Land use in the area conssts of mixed forest and agriculture,
and ground water is N-rich near hilltops where the agricultura land is most dense.

Data from the Upper Devonian aquifer in northern lowa indicate that nitrate
concentration in ground water is high in karst areas. Karst is eroded limestone that
contains fractures and sinkholes that enhance recharge to aguifers. Such features make
the rocks extremey porous, especialy in areas where overlying deposts are thin or
missng. Median nitrate concentration in ground water was 9.6 mg/L in karst materid,
compared with 6.9 mg/L in very shalow bedrock and <0.1 mg/L in deep bedrock
(Halberg and Keeney, 1993). Surficid recharge ddivered nitrate from agriculturd areas
to the Upper Devonian aquifer in the karst and shalow bedrock areas. Tritium data
indicated that modern (post-1953) water has migrated into the aquifer to depths greater
than 30 minthese areas. In contrast, the deeper bedrock aquifers contain older water
with ggnificantly lower nitrate concentration.

Conclusions

Multivariate logistic regresson was used in a nationd-scale andyssto identify
varigbles that sgnificantly influence nitrate contamination of shallow, recently recharged
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ground water. The LR mode predicts the likelihood that nitrate in ground water exceeds
4 mg/L. Thefind mode consds of variables representing (1) fertilizer N loading (Wad
p = 0.012), (2) percent cropland-pasture (p < 0.001), (3) In(population density) (p <
0.001), (4) percent wel-drained soils (p = 0.002), (5) depth to the seasondly high water
table (p = 0.001), and (6) presence or absence of afracture zone within the aquifer (p =
0.002). TheWald p-vaduesare highly sgnificant at the 0.05 leve. A goodness-of-fit test
indicates that the modd fits the data very well, and observed and predicted probabilities
of nitrate contamination are strongly correlated (r* = 0.971). The multivariate LR model
fits the data much better than do any of the preliminary univariate moddls. Based on the
mode, nitrate contamination of ground water is not caused by any single factor but
depends on the combined, smultaneous influence of factors representing N loading
sources and aquifer susceptibility characterigtics.
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Table 1. Explanatory variables and descriptive statistics

Interquartile

Number of

Variable GIScompilation area Minimum Median Maximum Range observations
Nitrogen sources
N fertilizer loading, kg/ha 500-m well buffer 0.0 275 180 64.5 1,230
Total N? kg/ha 500-m well buffer 11 60.2 224 82.3 1,230
Cropland-pasture, % 500-m well buffer 0.0 84.9 100 9.8 1,230
Population density, people/kn? 500-m well buffer 01 1938 4135 165 1,230
Aquifer susceptibility
HYDGRP B soils®, % Land-use study area 838 41.9 784 24.9 1,230
HYDGRP A and B soils, or “well-drained,” ® % Land-use study area 16.1 56.0 87.6 229 1,230
Organic matter in soils, % by wt. Land-use study area 01 0.6 106 11 1,230
Depth to seasonally high water table, m Land-use study area 04 15 18 05 1,230
Presence or absence of rock fracture (binary Land-use study area 0 0 1 0 1,199
indicator =0 or 1)
Artificially drained soils, % Land-use study area 00 0.2 390 32 1,230
Woodland-to-cropland ratio, %/% 500-m well buffer 0.0 0.0 823 0 953
Depth to top of open interval below water, or Well point 0.0 20 112 53 1,04
“sampling depth,” m
Mean annual precipitation, 1961-90, cm Land-use study area 117 97.0 138 84.3 1,230

%ot N = sum of N loading from fertilizer, manure, and atmospheric deposition

®HY DGRP = STATSGO s0il hydrologic group
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Table 2. Fitting criteriafor univariate logistic-regression models

Hosmer -
Likelihood  Lemeshow  r?for obs.
Estimated ratio (G) p-  statistic p- and pred. Number of

Model coefficient value® value prob. observ.

Sources
uvi N fertilizer loading, kg/ha 0.0082 <0.001 <0.001 0.368 1,214
uv2 N fertilizer in HY DGRP B oils®, kg/ha 0.0832 <0.001 <0.001 0.586 191
uv3 N fertilizer in HY DGRP A and B sails®, kg/ha 0.0064 <0.001 <0.001 0.232 757
uv4 Total N®inHYDGRP A and B soils®, kg/ha 0.0057 <0.001 <0.001 0.253 757
uv5 Cropland-pasture, % 0.0115 <0.001 0.005 0.723 1214
uve Population density, people/kn? -0.0002 0075 <0.001 0.150 1214

Aquifer susceptibility
uv7 HYDGRPB soils®, % 0.0379 <0.001 <0.001 0472 1214
uv8 HYDGRP A and B soils, or “well-drained,” ® % 0.0362 <0.001 <0.001 0.760 1214
uvo Organic matter in soils, % by wt. -0.1070 0.002 <0.001 0.119 1,214
uv10 Depth to seasonally high water table, m 1.5939 <0.001 <0.001 0.631 1214
uvia Presence or absence of rock fracture 1.9002 <0.001 - - 1,183
uviz Artificially drained soils, % -0.0385 <0.001 <0.001 0.357 1214
uvi13 Woodland-to-cropland ratio, %/% -0.2065 0.001 <0.001 0.741 A1
uvi4 Depth to top of open interval below water, or “sampling depth,” m 0.0457 <0.001 <0.001 0.298 1,038
uvi15 Mean annual precipitation, 1961-90, cm -0.0060 <0.001 <0.001 0.086 1214

or G =-2(Lo-L), where L, isfor intercept-only model
*HYDGRP = STATSGO soil hydrologic group
“total N = sum of N loading from fertilizer, manure, and atmospheric deposition
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Table 3. Fitting criteria for competing multivariate logistic-regresson models

Likelihood
ratio (G) Number of
Model® p-value® observations
Initial nested comparison
MV3  fert, weldr, wtdep, sampdep, bfract -- 987
MV1 fert, weldr, wtdep, sampdep, bfract, pctcrop 0.001 987
MV2  fert, weldr, wtdep, sampdep, bfract, pctcrop, frixsd 0.141 987
Rever se selection
MV4  fert, pctcrop, welldr, widep, bfract 987

MV1 fert, pctcrop, welldr, wtdep, bfract, sampdep 0.661 987
Final nested comparison

MV4  fert, pcterop, welldr, widep, bfract -- 987

MV5  fert, pctcrop, welldr, wtdep, bfract, popden <0.001 987

ert = fartilizer N; welldr = percent well-drained soils, or the sum of percentages of soil hydrologic groups A and B; wtdep = depth to
seasondly high water table; sampdep = sampling depth, or depth to top of well screen or open borehole below water level; bfract =
binary varidble indicating presence or absence of fractured rocks; pctcrop = percent cropland- pasture; frixsd = interaction between
fertilizer N and sampling depth; popden = population dengty

bG = 2(L¢-Lg), where L is more complex, nested model and Ls is smpler model (Helsel and Hirsch, 1992)
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Table4. Explanatory variablesin final multivariate logistic-regression model MV6

Estimated Wald
Variable coefficient p-value

Constant -4.485 <0.001
Fertilizer N, kg/ha 0.005 0.012
Cropland-pasture, % 0.015 <0.001
In(population density), In(people/km?) 0.194 <0.001
Well-drained soils?, % 0.017 0.002
Depth to season. high water table, m 0.850 0.001
Presence or absence of rock fracture 1.033 0.002

#um of percentages of soil hydrologic groups A and B in area
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Connecticut,Housatonic,
and Thames River Basins

Georgia-Florida
Coastal Plain

Wells in NAWQA land-use studies conducted during 1992-1995

Figure 1. Locationsof shallow wells sampled as part of NAWQA land-use
studies conducted during 1992-1995.
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Figure2. Linear regression fit of observed and predicted probabilities of
nitrate exceeding 4 mg/L in shallowground water, for univariate logistic-
regression modelsrepresenting (a) per cent well-drained soils and (b) per cent
organic matter in land-use study ar eas.

Bernard T. Nolan 22



1.0

0.8 —
r’=0.971

0.6 A ]

PRED. PROB. EXCEED. 4 mg/L NITRATE
>

0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

OBS. PROB. EXCEEDING 4 mg/L NITRATE
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